\(\int \frac {\tanh (x)}{\sqrt {a+b \tanh ^4(x)}} \, dx\) [261]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 15, antiderivative size = 40 \[ \int \frac {\tanh (x)}{\sqrt {a+b \tanh ^4(x)}} \, dx=\frac {\text {arctanh}\left (\frac {a+b \tanh ^2(x)}{\sqrt {a+b} \sqrt {a+b \tanh ^4(x)}}\right )}{2 \sqrt {a+b}} \]

[Out]

1/2*arctanh((a+b*tanh(x)^2)/(a+b)^(1/2)/(a+b*tanh(x)^4)^(1/2))/(a+b)^(1/2)

Rubi [A] (verified)

Time = 0.06 (sec) , antiderivative size = 40, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.267, Rules used = {3751, 1262, 739, 212} \[ \int \frac {\tanh (x)}{\sqrt {a+b \tanh ^4(x)}} \, dx=\frac {\text {arctanh}\left (\frac {a+b \tanh ^2(x)}{\sqrt {a+b} \sqrt {a+b \tanh ^4(x)}}\right )}{2 \sqrt {a+b}} \]

[In]

Int[Tanh[x]/Sqrt[a + b*Tanh[x]^4],x]

[Out]

ArcTanh[(a + b*Tanh[x]^2)/(Sqrt[a + b]*Sqrt[a + b*Tanh[x]^4])]/(2*Sqrt[a + b])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 739

Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> -Subst[Int[1/(c*d^2 + a*e^2 - x^2), x], x,
 (a*e - c*d*x)/Sqrt[a + c*x^2]] /; FreeQ[{a, c, d, e}, x]

Rule 1262

Int[(x_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[Int[(d + e*x)^q
*(a + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, c, d, e, p, q}, x]

Rule 3751

Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
 :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[c*(ff/f), Subst[Int[(d*ff*(x/c))^m*((a + b*(ff*x)^n)^p/(c^2
 + ff^2*x^2)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && (IGtQ[p, 0] || EqQ
[n, 2] || EqQ[n, 4] || (IntegerQ[p] && RationalQ[n]))

Rubi steps \begin{align*} \text {integral}& = \text {Subst}\left (\int \frac {x}{\left (1-x^2\right ) \sqrt {a+b x^4}} \, dx,x,\tanh (x)\right ) \\ & = \frac {1}{2} \text {Subst}\left (\int \frac {1}{(1-x) \sqrt {a+b x^2}} \, dx,x,\tanh ^2(x)\right ) \\ & = -\left (\frac {1}{2} \text {Subst}\left (\int \frac {1}{a+b-x^2} \, dx,x,\frac {-a-b \tanh ^2(x)}{\sqrt {a+b \tanh ^4(x)}}\right )\right ) \\ & = \frac {\text {arctanh}\left (\frac {a+b \tanh ^2(x)}{\sqrt {a+b} \sqrt {a+b \tanh ^4(x)}}\right )}{2 \sqrt {a+b}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.02 (sec) , antiderivative size = 40, normalized size of antiderivative = 1.00 \[ \int \frac {\tanh (x)}{\sqrt {a+b \tanh ^4(x)}} \, dx=\frac {\text {arctanh}\left (\frac {a+b \tanh ^2(x)}{\sqrt {a+b} \sqrt {a+b \tanh ^4(x)}}\right )}{2 \sqrt {a+b}} \]

[In]

Integrate[Tanh[x]/Sqrt[a + b*Tanh[x]^4],x]

[Out]

ArcTanh[(a + b*Tanh[x]^2)/(Sqrt[a + b]*Sqrt[a + b*Tanh[x]^4])]/(2*Sqrt[a + b])

Maple [A] (verified)

Time = 0.56 (sec) , antiderivative size = 37, normalized size of antiderivative = 0.92

method result size
derivativedivides \(\frac {\operatorname {arctanh}\left (\frac {2 b \tanh \left (x \right )^{2}+2 a}{2 \sqrt {a +b}\, \sqrt {a +b \tanh \left (x \right )^{4}}}\right )}{2 \sqrt {a +b}}\) \(37\)
default \(\frac {\operatorname {arctanh}\left (\frac {2 b \tanh \left (x \right )^{2}+2 a}{2 \sqrt {a +b}\, \sqrt {a +b \tanh \left (x \right )^{4}}}\right )}{2 \sqrt {a +b}}\) \(37\)

[In]

int(tanh(x)/(a+b*tanh(x)^4)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/2/(a+b)^(1/2)*arctanh(1/2*(2*b*tanh(x)^2+2*a)/(a+b)^(1/2)/(a+b*tanh(x)^4)^(1/2))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 624 vs. \(2 (32) = 64\).

Time = 0.41 (sec) , antiderivative size = 1286, normalized size of antiderivative = 32.15 \[ \int \frac {\tanh (x)}{\sqrt {a+b \tanh ^4(x)}} \, dx=\text {Too large to display} \]

[In]

integrate(tanh(x)/(a+b*tanh(x)^4)^(1/2),x, algorithm="fricas")

[Out]

[1/4*log(((a^2 + 2*a*b + b^2)*cosh(x)^8 + 8*(a^2 + 2*a*b + b^2)*cosh(x)*sinh(x)^7 + (a^2 + 2*a*b + b^2)*sinh(x
)^8 + 4*(a^2 - b^2)*cosh(x)^6 + 4*(7*(a^2 + 2*a*b + b^2)*cosh(x)^2 + a^2 - b^2)*sinh(x)^6 + 8*(7*(a^2 + 2*a*b
+ b^2)*cosh(x)^3 + 3*(a^2 - b^2)*cosh(x))*sinh(x)^5 + 2*(3*a^2 + 2*a*b + 3*b^2)*cosh(x)^4 + 2*(35*(a^2 + 2*a*b
 + b^2)*cosh(x)^4 + 30*(a^2 - b^2)*cosh(x)^2 + 3*a^2 + 2*a*b + 3*b^2)*sinh(x)^4 + 8*(7*(a^2 + 2*a*b + b^2)*cos
h(x)^5 + 10*(a^2 - b^2)*cosh(x)^3 + (3*a^2 + 2*a*b + 3*b^2)*cosh(x))*sinh(x)^3 + 4*(a^2 - b^2)*cosh(x)^2 + 4*(
7*(a^2 + 2*a*b + b^2)*cosh(x)^6 + 15*(a^2 - b^2)*cosh(x)^4 + 3*(3*a^2 + 2*a*b + 3*b^2)*cosh(x)^2 + a^2 - b^2)*
sinh(x)^2 + sqrt(2)*((a + b)*cosh(x)^4 + 4*(a + b)*cosh(x)*sinh(x)^3 + (a + b)*sinh(x)^4 + 2*(a - b)*cosh(x)^2
 + 2*(3*(a + b)*cosh(x)^2 + a - b)*sinh(x)^2 + 4*((a + b)*cosh(x)^3 + (a - b)*cosh(x))*sinh(x) + a + b)*sqrt(a
 + b)*sqrt(((a + b)*cosh(x)^4 + (a + b)*sinh(x)^4 + 4*(a - b)*cosh(x)^2 + 2*(3*(a + b)*cosh(x)^2 + 2*a - 2*b)*
sinh(x)^2 + 3*a + 3*b)/(cosh(x)^4 - 4*cosh(x)^3*sinh(x) + 6*cosh(x)^2*sinh(x)^2 - 4*cosh(x)*sinh(x)^3 + sinh(x
)^4)) + a^2 + 2*a*b + b^2 + 8*((a^2 + 2*a*b + b^2)*cosh(x)^7 + 3*(a^2 - b^2)*cosh(x)^5 + (3*a^2 + 2*a*b + 3*b^
2)*cosh(x)^3 + (a^2 - b^2)*cosh(x))*sinh(x))/(cosh(x)^4 + 4*cosh(x)^3*sinh(x) + 6*cosh(x)^2*sinh(x)^2 + 4*cosh
(x)*sinh(x)^3 + sinh(x)^4))/sqrt(a + b), -1/2*sqrt(-a - b)*arctan(sqrt(2)*((a + b)*cosh(x)^4 + 4*(a + b)*cosh(
x)*sinh(x)^3 + (a + b)*sinh(x)^4 + 2*(a - b)*cosh(x)^2 + 2*(3*(a + b)*cosh(x)^2 + a - b)*sinh(x)^2 + 4*((a + b
)*cosh(x)^3 + (a - b)*cosh(x))*sinh(x) + a + b)*sqrt(-a - b)*sqrt(((a + b)*cosh(x)^4 + (a + b)*sinh(x)^4 + 4*(
a - b)*cosh(x)^2 + 2*(3*(a + b)*cosh(x)^2 + 2*a - 2*b)*sinh(x)^2 + 3*a + 3*b)/(cosh(x)^4 - 4*cosh(x)^3*sinh(x)
 + 6*cosh(x)^2*sinh(x)^2 - 4*cosh(x)*sinh(x)^3 + sinh(x)^4))/((a^2 + 2*a*b + b^2)*cosh(x)^8 + 8*(a^2 + 2*a*b +
 b^2)*cosh(x)*sinh(x)^7 + (a^2 + 2*a*b + b^2)*sinh(x)^8 + 4*(a^2 - b^2)*cosh(x)^6 + 4*(7*(a^2 + 2*a*b + b^2)*c
osh(x)^2 + a^2 - b^2)*sinh(x)^6 + 8*(7*(a^2 + 2*a*b + b^2)*cosh(x)^3 + 3*(a^2 - b^2)*cosh(x))*sinh(x)^5 + 6*(a
^2 + 2*a*b + b^2)*cosh(x)^4 + 2*(35*(a^2 + 2*a*b + b^2)*cosh(x)^4 + 30*(a^2 - b^2)*cosh(x)^2 + 3*a^2 + 6*a*b +
 3*b^2)*sinh(x)^4 + 8*(7*(a^2 + 2*a*b + b^2)*cosh(x)^5 + 10*(a^2 - b^2)*cosh(x)^3 + 3*(a^2 + 2*a*b + b^2)*cosh
(x))*sinh(x)^3 + 4*(a^2 - b^2)*cosh(x)^2 + 4*(7*(a^2 + 2*a*b + b^2)*cosh(x)^6 + 15*(a^2 - b^2)*cosh(x)^4 + 9*(
a^2 + 2*a*b + b^2)*cosh(x)^2 + a^2 - b^2)*sinh(x)^2 + a^2 + 2*a*b + b^2 + 8*((a^2 + 2*a*b + b^2)*cosh(x)^7 + 3
*(a^2 - b^2)*cosh(x)^5 + 3*(a^2 + 2*a*b + b^2)*cosh(x)^3 + (a^2 - b^2)*cosh(x))*sinh(x)))/(a + b)]

Sympy [F]

\[ \int \frac {\tanh (x)}{\sqrt {a+b \tanh ^4(x)}} \, dx=\int \frac {\tanh {\left (x \right )}}{\sqrt {a + b \tanh ^{4}{\left (x \right )}}}\, dx \]

[In]

integrate(tanh(x)/(a+b*tanh(x)**4)**(1/2),x)

[Out]

Integral(tanh(x)/sqrt(a + b*tanh(x)**4), x)

Maxima [F]

\[ \int \frac {\tanh (x)}{\sqrt {a+b \tanh ^4(x)}} \, dx=\int { \frac {\tanh \left (x\right )}{\sqrt {b \tanh \left (x\right )^{4} + a}} \,d x } \]

[In]

integrate(tanh(x)/(a+b*tanh(x)^4)^(1/2),x, algorithm="maxima")

[Out]

integrate(tanh(x)/sqrt(b*tanh(x)^4 + a), x)

Giac [F]

\[ \int \frac {\tanh (x)}{\sqrt {a+b \tanh ^4(x)}} \, dx=\int { \frac {\tanh \left (x\right )}{\sqrt {b \tanh \left (x\right )^{4} + a}} \,d x } \]

[In]

integrate(tanh(x)/(a+b*tanh(x)^4)^(1/2),x, algorithm="giac")

[Out]

integrate(tanh(x)/sqrt(b*tanh(x)^4 + a), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\tanh (x)}{\sqrt {a+b \tanh ^4(x)}} \, dx=\int \frac {\mathrm {tanh}\left (x\right )}{\sqrt {b\,{\mathrm {tanh}\left (x\right )}^4+a}} \,d x \]

[In]

int(tanh(x)/(a + b*tanh(x)^4)^(1/2),x)

[Out]

int(tanh(x)/(a + b*tanh(x)^4)^(1/2), x)